Προβλήματα Μαθηματικών

Ιουνίου 30, 2016

Γινόμενα Borel

Filed under: Άλυτα Προβλήματα — Themis Mitsis @ 4:38 μμ

Αν ο X είναι ένας μετρικός χώρος με \mathcal B(X) συμβολίζουμε τη σ-άλγεβρα των συνόλων Borel και με \mathcal B(X)\otimes\mathcal B(X) τη σ-άλγεβρα που παράγεται από όλα τα ορθογώνια A\times B όπου τα A,B είναι Borel υποσύνολα τού X. Δεν είναι δύσκολο να δει κανείς ότι

\mathcal B(\mathbb R\times \mathbb R)=\mathcal B(\mathbb R)\otimes\mathcal B(\mathbb R).

Ισχύει το ίδιο με ένα αυθαίρετο μετρικό χώρο στη θέση τού \mathbb R;

Ορθοκανονικό σύνολο

Filed under: Άλυτα Προβλήματα — Themis Mitsis @ 2:13 πμ

Ας είναι S ένα ορθοκανονικό υποσύνολο τού L^2([0,1]) το οποίο αποτελείται από συνεχείς συναρτήσεις. Θέτουμε Y=\overline{\langle S \rangle}, όπου \langle\cdot\rangle είναι η γραμμική θήκη. Δείξτε ότι αν υπάρχει σταθερά C>0 τέτοια ώστε

\displaystyle{\sup_{f\in Y,\ f\ne0}\frac{\|f\|_\infty}{\|f\|_2}\leq C}, τότε ο Y έχει πεπερασμένη διάσταση.

Σχεδόν αύξουσα

Filed under: Λυμένα Προβλήματα — Themis Mitsis @ 1:58 πμ

Ας είναι f:\mathbb R\to\mathbb R μια τοπικά ολοκληρώσιμη συνάρτηση τέτοια ώστε για κάθε n\in\mathbb N ισχύει ότι f(x+\frac1n)\geq f(x) για σχεδόν όλα τα x. Δείξτε ότι για κάθε a\geq0 έχουμε ότι f(x+a)\geq f(x) για σχεδόν όλα τα x.

Σειρά μεταθέσεων

Filed under: Άλυτα Προβλήματα — Themis Mitsis @ 1:48 πμ

Αν η f:\mathbb R\to\mathbb R είναι ολοκληρώσιμη, τότε η σειρά

\displaystyle {\sum_{n=1}^{+\infty}\frac{1}{\sqrt n}f\left(x-\sqrt n\right)}

συγκλίνει για σχεδόν όλα τα x.

Μαρτίου 7, 2016

Argument

Filed under: Άλυτα Προβλήματα — Themis Mitsis @ 3:16 μμ

Αν 0<p<1 και u>0, βρείτε μια εκτίμηση για το όρισμα τού μιγαδικού αριθμού

\displaystyle{pe^{-iu\sqrt{\frac{1-p}{p}}}+(1-p)e^{iu\sqrt{\frac{p}{1-p}}}}

Ιανουαρίου 1, 2016

Ροπές και διαμερίσεις

Filed under: Άλυτα Προβλήματα — Themis Mitsis @ 8:35 μμ

Το ερώτημα θέτει ο Κ. Κουρουζίδης. Η ροπή  2n τάξης τής τυποποιημένης κανονικής κατανομής είναι ίση με το πλήθος των διαμερίσεων σε 2-σύνολα ενός συνόλου με 2n στοιχεία. Είναι αυτό μια αριθμητική σύμπτωση;

 

Σεπτεμβρίου 8, 2015

Η περίοδος του αθροίσματος

Filed under: Λυμένα Προβλήματα — Mihalis Kolountzakis @ 4:19 μμ

Ας είναι f μια συνάρτηση με πεδίο ορισμού τους ακεραίους. Ένας φυσικός αριθμός T>0 λέγεται περίοδος της f αν f(x+T) = f(x),\ \ \forall x \in {\mathbb Z}. Αν υπάρχει τέτοιο T τότε η f λέγεται περιοδική. Έυκολα βλέπει κανείς ότι η ελάχιστη περίοδος μιας περιοδικής συνάρτησης διαιρεί κάθε άλλη περίοδο και ότι κάθε πολλαπλάσιο περιόδου είναι κι αυτό περίοδος.

Αν είναι a, b>0 δύο φυσικοί αριθμοί πρώτοι μεταξύ τους και f, g δυο συναρτήσεις επί των ακεραίων με ελάχιστη περίοδο a και b αντίστοιχα δείξτε ότι η συνάρτηση f+g είναι επίσης περιοδική και μάλιστα με ελάχιστη περίοδο το ab. (Η έμφαση είναι στο «ελάχιστη».)

Τι λέτε για την ελάχιστη περίοδο της f+g αν οι a,b δεν είναι μεταξύ τους πρώτοι;

Ιουλίου 22, 2015

Στο πνεύμα των ημερών.

Filed under: Λυμένα Προβλήματα — Themis Mitsis @ 2:27 μμ

Στο μακάβριο πνεύμα των σχολίων της προηγούμενης ανάρτησης, Ν στρατιώτες πυροβολούν Ν κατάδικους. 1. Κάθε στρατιώτης πυροβολεί ακριβώς ένα κατάδικο και είναι 100% εύστοχος. 2. Κανένας κατάδικος δεν πυροβολείται από περισσότερους από ένα στρατιώτη (εκτός από τον Herr Schäuble που θέλει ομοβροντία). Ποια η πιθανότητα k στρατιώτες να πυροβολήσουν τους κατάδικους που είναι απέναντι τους; Και για να το καταλάβει και ο μπακάλης της γειτονιάς, ποια η πιθανότητα μια τυχαία μετάθεση να έχει k σταθερά σημεία;

Ιουλίου 20, 2015

Επί

Filed under: Λυμένα Προβλήματα — Themis Mitsis @ 11:46 μμ

Έστω A και B δυο πεπερασμένα σύνολα με το B να έχει το πολύ τόσα στοιχεία όσα και το A. Διαλέγουμε στην τύχη μια συνάρτηση από το A στο B. Ποια η πιθανότητα να είναι επί;

Ασύμμετρα σύνολα

Ένα ακόμα πρόβλημα από τον Κωνσταντίνο Κουρουζίδη

Για κάθε δυαδικό διάνυσμα x\in\{0,1\}^n θέτουμε \hat x να είναι το διάνυσμα με συντεταγμένες \hat x(j)=1-x(j). Ένα σύνολο δυαδικών διανυσμάτων A λέγεται ασύμμετρο αν x\in A\Rightarrow \hat x\notin A. Πόσα ασύμμετρα σύνολα υπάρχουν;

Ιουλίου 4, 2015

Συμμετρική κατάσταση

Filed under: Λυμένα Προβλήματα,Με επιπλέον ερωτήματα — Mihalis Kolountzakis @ 12:50 μμ

y

Γνωρίζουμε πολύ καλά ότι αν e_1=(1,0), e_2=(0,1) είναι τα συνηθισμένα διανύσματα βάσης στο επίιπεδο {\mathbb R}^2 τότε κάθε διάνυσμα v\in{\mathbb R}^2 μπορεί να γραφεί ως:

v = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2.

Μπορεί δηλ. να γραφεί το v ως γραμμικός συνδυασμός των e_1, e_2 όπου οι συντελεστές είναι απλά τα εσωτερικά γινόμενα με τα διανύσματα αυτά. Το ίδιο φυσικά ισχύει αν στη θέση των e_1, e_2 βάλουμε δύο οποιαδήποτε ορθογώνια μεταξύ τους διανύσματα του επιπέδου με μέτρο 1.

Αν \phi_1 = (\sqrt{2/3}, 0) και \phi_2, \phi_3 είναι οι περιστροφές του \phi_1 κατά \pm\frac{2\pi}{3} αντίστοιχα (όπως φαίνονται στο σχήμα παραπάνω), δείξτε ότι και για τα \phi_1, \phi_2, \phi_3 ισχύει ότι κάθε διάνυσμα v\in{\mathbb R}^2 μπορεί να γραφεί ως:

v = \sum_{j=1}^3 \langle v, \phi_j \rangle \phi_j.

Ιουλίου 1, 2015

Εδώ ο κόσμος χάνεται…

Filed under: Λυμένα Προβλήματα — Themis Mitsis @ 7:44 μμ

… και εμείς υπολογίζουμε αθροίσματα!!!     Αν οι αριθμοί x_1,x_2,\dots,x_n έχουν άθροισμα μηδέν και είναι όλοι απόλυτα φραγμένοι από μια θετική σταθερά c, τότε υπάρχει αναδιάταξη x_1=x_{k_1},x_{k_2},\dots,x_{k_n} τέτοια ώστε  \displaystyle\left|\sum_{j\leq i} x_{k_j}\right|\leq c για κάθε i. Το πρόβλημα πρότεινε ο Κωνσταντίνος Κουρουζίδης.

Ιουνίου 30, 2015

Πόσο μπορεί να επηρεάσει το νόμισμα;

Filed under: Λυμένα Προβλήματα — Mihalis Kolountzakis @ 10:46 μμ

greek-euro    drachma

Δύο φίλοι, ο Β και ο S, παίζουν ένα παιχνίδι με κέρματα. Ο κάθε ένας από τους δύο έχει τα δικά του κέρματα. Ο κάθε ένας από τους δύο ρίχνει όλα τα κέρματά του (μια φορά) και κερδίζει όποιος έφερε τις περισσότερες κορώνες.

Ο Β πιστεύει ότι έχοντας περισσότερα κέρματα στα χέρια του θα καταφέρει πιο εύκολα να κερδίσει τον S. Έτσι επιλέγει ένα φθηνότερο νόμισμα το οποίο του επιτρέπει έχει περισσότερα κέρματα από τον S. Όντας όμως φτωχότερος από τον S ο Β καταφέρνει να έχει μόνο ένα κέρμα παραπάνω από τον S.

Πόσο επηρεάζεται η πιθανότητα να κερδίσει ο Β τον S από το γεγονός ότι έχει ένα κέρμα παραπάνω;

Ιουνίου 28, 2015

Πάντα θετικό

Filed under: Λυμένα Προβλήματα — Mihalis Kolountzakis @ 11:59 μμ

positive

Δείξτε ότι το πολυώνυμο

p(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots + \frac{x^{2n}}{(2n)!}

είναι πάντα θετικό (για κάθε x\in{\mathbb R}, n=1, 2, \ldots).

Ιουνίου 26, 2015

Χαοτικός χρωματισμός

Filed under: Λυμένα Προβλήματα — Mihalis Kolountzakis @ 6:35 μμ

colored-row

Έχουμε 1000 κουτιά στη σειρά (στις θέσεις 1, 2, 3, … , 1000).

Δείξτε ότι μπορούμε να τα βάψουμε με δύο χρώματα, π.χ. κόκκινα ή μπλε, με τέτοιο τρόπο ώστε να μην υπάρχει αριθμητική πρόοδος μήκους 20 από κουτιά που να είναι όλα το ίδιο χρώμα.

Ιουνίου 21, 2015

Αλυσίδα υποσυνόλων

Filed under: Λυμένα Προβλήματα — Mihalis Kolountzakis @ 10:54 μμ

Μια οικογένεια συνόλων την ονομάζουμε αλυσίδα αν οποιαδήποτε δύο σύνολα της οικογένειας είναι συγκρίσιμα, περιέχει δηλ. το πρώτο σύνολο το δεύτερο ή το δεύτερο περιέχει το πρώτο.

nested

Πόσα σύνολα μπορεί να περιέχει μια αλυσίδα υποσυνόλων ενός άπειρου συνόλου; Πιο συγκεκριμένα, υπάρχει άπειρο σύνολο κάθε αλυσίδα του οποίου να είναι αριθμήσιμη;

Ιουνίου 19, 2015

Μπάλες σε χρωματιστά κουτιά

Filed under: Λυμένα Προβλήματα — Mihalis Kolountzakis @ 10:05 πμ

f

Έχουμε n αριθμημένες μπάλες (n>2) και κάμποσα, επίσης αριθμημένα, χρωματιστά κουτιά, κάποια από τα οποία είναι βαμμένα κόκκινα, κάποια μπλε και κάποια είναι άβαφα (υπάρχουν και από τα τρία είδη κουτιών).

Ας είναι A το πλήθος των τρόπων με τους οποίους μπορούν αυτές οι μπάλες να τοποθετηθούν αποκλειστικά στα άβαφα κουτιά και B το πλήθος των τρόπων με τους οποίους μπορούν αυτές οι μπάλες να τοποθτηθούν σε κουτιά που είναι όλα του ίδιου χρώματος (κόκκινου ή μπλε).

Δείξτε ότι πάντα A \neq B.

Ιουνίου 18, 2015

Απεριοδική Πλακόστρωση

Filed under: Άλυτα Προβλήματα — Mihalis Kolountzakis @ 6:40 μμ

lattice-set

Κατασκευάστε σύνολα A, B \subseteq {\mathbf Z}^2 τέτοια ώστε

  1. Το σύνολο A είναι πεπερασμένο,
  2. Κάθε u \in {\mathbf Z}^2 γράφεται κατά μοναδικό τρόπο ως άθροισμα
    u = a +b, με a \in A, b \in B,
  3. Δεν υπάρχει διάνυσμα u \in {\mathbf Z}^2\setminus\{0\} τέτοιο ώστε B = B+u.

Το παρακάτω το είχα αναρτήσει το 2008 και κανείς δεν έκανε το παραμικρό. Το φέρνω λοιπόν πάνω μήπως και έχει καλύτερη τύχη τώρα.

Ιουνίου 17, 2015

Το μαγικό κολιέ των χρωμάτων για μια ζωή χωρίς βαρετές επαναλήψεις

Filed under: Λυμένα Προβλήματα,Με επιπλέον ερωτήματα — Mihalis Kolountzakis @ 4:14 μμ

Στο φετινό φεστιβάλ στα Μάταλα ένας από τους πλανόδιους πωλητές χειροποίητης τέχνης θα πουλάει το μαγικό κολιέ των χρωμάτων:

necklace

Το κολιέ αυτό έχει την παρακάτω μαγική ιδιότητα που, σύμφωνα με τον πλανόδιο έμπορο, βοηθάει στο να περνάει η ζωή πιο ωραία και με λιγότερες βαρετές επαναλήψεις.

Είναι φτιαγμένο από 64 χάντρες από 8 διαφορετικά χρώματα και είναι βαλμένες αυτές με τέτοιο τρόπο ώστε αν κανείς διανύσει το μήκος του κολιέ κατά τη μια κατεύθυνση (οποιαδήποτε από τις δύο) τότε θα δει όλες τις δυνατές διαδοχές δύο χρωμάτων ακριβώς μια φορά την κάθε μία.

(Αν ονομάσουμε, χάριν συντομίας, τα χρώματά μας \chi_1,\ldots,\chi_8 τότε θα δούμε δηλ. διανύοντας το κολιέ και μια μετάβαση από \chi_1 σε \chi_1, και μια μετάβαση από \chi_1 σε \chi_2, … , και μια μετάβαση από το \chi_1 σε \chi_8, κλπ. Υπάρχουν φυσικά 8\times 8 = 64 τέτοιες μεταβάσεις, όσες και οι χάντρες του κολιέ. Άρα ένας άλλος τρόπος να πει κανείς το ίδιο πράγμα είναι ότι όπως κινούμαστε γύρω-γύρω στο κολιέ δε θα δούμε ποτέ την ίδια διαδοχή χρωμάτων ξανά σε μια πλήρη μας διάσχιση του κολιέ.)

Υπάρχει τρόπος να φτιαχτεί τέτοιο κολιέ; Αν ναι, πώς; Αν όχι, γιατί;

Ιουνίου 16, 2015

Μικρό σύνολο, όπου υπάρχουν όλες οι αποστάσεις

Filed under: Λυμένα Προβλήματα — Mihalis Kolountzakis @ 12:08 μμ

Κατασκευάστε ένα σύνολο E \subseteq {\mathbb R} που να είναι μια ένωση διαστημάτων με συνολικό μήκος το πολύ 1

intervals

και τέτοιο ώστε για κάθε πραγματικό αριθμό d να υπάρχουν δύο στοιχεία x, y \in E με

x-y=d.

Επόμενη σελίδα: »

Blog στο WordPress.com.

Αρέσει σε %d bloggers: