Προβλήματα Μαθηματικών

Ιουλίου 22, 2015

Στο πνεύμα των ημερών.

Filed under: Λυμένα Προβλήματα — Themis Mitsis @ 2:27 μμ

Στο μακάβριο πνεύμα των σχολίων της προηγούμενης ανάρτησης, Ν στρατιώτες πυροβολούν Ν κατάδικους. 1. Κάθε στρατιώτης πυροβολεί ακριβώς ένα κατάδικο και είναι 100% εύστοχος. 2. Κανένας κατάδικος δεν πυροβολείται από περισσότερους από ένα στρατιώτη (εκτός από τον Herr Schäuble που θέλει ομοβροντία). Ποια η πιθανότητα k στρατιώτες να πυροβολήσουν τους κατάδικους που είναι απέναντι τους; Και για να το καταλάβει και ο μπακάλης της γειτονιάς, ποια η πιθανότητα μια τυχαία μετάθεση να έχει k σταθερά σημεία;

Advertisements

2 Σχόλια »

  1. Θα δοκιμάσω κι εδώ το σημάδι μου, για χάρη του Herr Schäuble, αν μη τι άλλο 🙂

    Υποθέτω ότι τα σταθερά σημεία είναι ακριβώς k (όχι τουλάχιστον k).
    Υπάρχουν συνολικά Ν! τρόποι για να αντιστοιχιστούν οι Ν στρατιώτες, ένας προς έναν, με τους Ν καταδίκους.
    Από αυτούς, οι τρόποι όπου k ακριβώς στρατιώτες αντιστοιχίζονται με τους απέναντί τους καταδίκους (ενώ οι υπόλοιποι Ν-k στρατιώτες όχι) είναι C(N,k)*!(N-k), όπου !(Ν-k) είναι οι διαταράξεις* (derangements) N-k στοιχείων (οι μεταθέσεις στις οποίες κανένα στοιχείο δεν είναι στην ίδια θέση ή, στο προκείμενο, κανένας από τους υπόλοιπους Ν-k στρατιώτες δεν πυροβολεί τον απέναντί του κατάδικο).
    Η ζητούμενη πιθανότητα είναι C(N,k)*!(N-k) / Ν! = !(N-k) / [k!*(N-k)!]

    * Το πλήθος των διαταράξεων ενός συνόλου ν στοιχείων εκφράζεται από τη συνάρτηση !ν και είναι !ν = ν!*Σ[(-1)^μ/μ!] για μ από 0 έως ν.
    Το άθροισμα Σ στην πιο πάνω παράσταση είναι οι ν πρώτοι όροι του αναπτύγματος Taylor του αριθμού 1/e.

    Μου αρέσει!

    Σχόλιο από ΘΑΝΑΣΗΣ ΠΑΠΑΔΗΜΗΤΡΙΟΥ — Ιουλίου 22, 2015 @ 7:10 μμ

  2. Σωστά. Μικρή παρηγοριά για σκοπευτές και στόχους.

    Μου αρέσει!

    Σχόλιο από Themis Mitsis — Ιουλίου 23, 2015 @ 6:57 μμ


RSS feed for comments on this post. TrackBack URI

Σχολιάστε

Συνδεθείτε για να δημοσιεύσετε το σχόλιο σας:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s

Blog στο WordPress.com.

Αρέσει σε %d bloggers: