Προβλήματα Μαθηματικών

Απρίλιος 4, 2013

Ανισότητα

Filed under: Άλυτα Προβλήματα — Themis Mitsis @ 1:28 μμ

Ένα πρόβλημα από τον Αλέξανδρο Γαλανάκη.

Έστω p>1, και a_1,\dots,a_n,b_1,\dots,b_n μη αρνητικοί αριθμοί τέτοιοι ώστε a_1^p-a_2^p-\dots-a_n^p>0 και b_1^p-b_2^p-\dots-b_n^p>0. Δείξτε ότι

\displaystyle\left(a_1^p-a_2^p-\dots-a_n^p\right)^{1/p}+\left(b_1^p-b_2^p-\dots-b_n^p\right)^{1/p}\leq\left[(a_1+b_1)^p-(a_2+b_2)^p-\dots-(a_n+b_n)^p\right]^{1/p}

 

Advertisements

Σχολιάστε »

Δεν υπάρχουν σχόλια.

RSS feed for comments on this post. TrackBack URI

Σχολιάστε

Συνδεθείτε για να δημοσιεύσετε το σχόλιο σας:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s

Δημιουργήστε ένα δωρεάν ιστότοπο ή ιστολόγιο στο WordPress.com.

Αρέσει σε %d bloggers: